1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255 | class RewardModelTrainer(ABC):
"""
Trainer for training a reward model.
Args:
model (torch.nn.Module): The model to be trained.
strategy (Strategy): The training strategy to apply.
optim (Optimizer): The optimizer to use during training.
train_dataloader (DataLoader): The dataloader for the training dataset.
eval_dataloader (DataLoader): The dataloader for the evaluation dataset.
scheduler (Scheduler): The learning rate scheduler for dynamic adjustments during training.
tokenizer (Tokenizer): The tokenizer for processing input text data.
max_norm (float, defaults to 0.5): Maximum gradient norm for gradient clipping.
max_epochs (int, defaults to 2): Maximum number of training epochs.
loss (str, defaults to "sigmoid"): The loss function to use during training, e.g., "sigmoid".
"""
def __init__(
self,
model,
strategy,
optim: Optimizer,
train_dataloader,
eval_dataloader,
scheduler,
tokenizer,
max_norm=0.5,
max_epochs: int = 2,
loss="sigmoid",
) -> None:
super().__init__()
# self.args = args
if loss == "sigmoid":
self.loss_fn = PairWiseLoss()
self.strategy.print("LogSigmoid Loss")
else:
self.loss_fn = LogExpLoss()
self.strategy.print("LogExp Loss")
# Mixtral 8*7b
self.aux_loss = self.args.aux_loss_coef > 1e-8
# packing samples
self.packing_samples = strategy.args.packing_samples
self.margin_loss = self.strategy.args.margin_loss
self.compute_fp32_loss = self.strategy.args.compute_fp32_loss
# wandb/tensorboard setting
# ...
def fit(self, args, consumed_samples=0, num_update_steps_per_epoch=None):
# get eval and save steps
# Restore step and start_epoch
step = consumed_samples // args.train_batch_size * self.strategy.accumulated_gradient + 1
start_epoch = consumed_samples // args.train_batch_size // num_update_steps_per_epoch
consumed_samples = consumed_samples % (num_update_steps_per_epoch * args.train_batch_size)
epoch_bar = tqdm(range(start_epoch, self.epochs), desc="Train epoch", disable=not self.strategy.is_rank_0())
acc_sum = 0 # 初始化累计准确率
loss_sum = 0 # 初始化累计损失
for epoch in range(start_epoch, self.epochs):
if isinstance(self.train_dataloader.sampler, DistributedSampler):
self.train_dataloader.sampler.set_epoch(
epoch, consumed_samples=0 if epoch > start_epoch else consumed_samples
)
# train
step_bar = tqdm(
range(self.train_dataloader.__len__()),
desc="Train step of epoch %d" % epoch,
disable=not self.strategy.is_rank_0(),
)
self.model.train() # 模型设置为训练模式
for data in self.train_dataloader:
if not self.packing_samples:
chosen_ids, c_mask, reject_ids, r_mask, margin = data
chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device())
c_mask = c_mask.squeeze(1).to(torch.cuda.current_device())
reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device())
r_mask = r_mask.squeeze(1).to(torch.cuda.current_device())
chosen_reward, reject_reward, aux_loss = self.concatenated_forward(
self.model, chosen_ids, c_mask, reject_ids, r_mask
) # 计算 chosen 和 rejected 的奖励和 aux_loss
else:
packed_input_ids, packed_attention_masks, packed_seq_lens, margin = data
packed_input_ids, packed_attention_masks = packed_input_ids.to(
torch.cuda.current_device()
), packed_attention_masks.to(torch.cuda.current_device())
chosen_reward, reject_reward, aux_loss = self.packed_samples_forward(
self.model, packed_input_ids, packed_attention_masks, packed_seq_lens
)
if self.margin_loss:
margin = torch.tensor(margin).to(torch.cuda.current_device())
else:
margin = None
# loss function
if self.compute_fp32_loss:
chosen_reward = chosen_reward.float()
reject_reward = reject_reward.float()
# chosen reward 和 reject reward 之间计算 loss
preference_loss = self.loss_fn(chosen_reward, reject_reward, margin)
# mixtral
if not self.aux_loss:
aux_loss = 0
loss = preference_loss + aux_loss * self.args.aux_loss_coef
# 反向传播
self.strategy.backward(loss, self.model, self.optimizer)
self.strategy.optimizer_step(self.optimizer, self.model, self.scheduler)
acc = (chosen_reward > reject_reward).float().mean().item()
acc_sum += acc
loss_sum += preference_loss.item()
# optional rm info
logs_dict = {
"loss": preference_loss.item(),
"acc": acc,
"chosen_reward": chosen_reward.mean().item(),
"reject_reward": reject_reward.mean().item(),
"lr": self.scheduler.get_last_lr()[0],
}
if self.aux_loss:
logs_dict["aux_loss"] = aux_loss.item()
# step bar
logs_dict = self.strategy.all_reduce(logs_dict)
step_bar.set_postfix(logs_dict)
step_bar.update()
# logs/checkpoints/evaluation
# 保存模型检查点
# ...
step += 1
epoch_bar.update()
# wandb / tensorboard 结束记录
def evaluate(self, eval_dataloader, steps=0):
step_bar = tqdm(
range(eval_dataloader.__len__()),
desc="Eval stage of steps %d" % steps,
disable=not self.strategy.is_rank_0(),
)
self.model.eval()
with torch.no_grad():
acc = 0
rewards = []
loss_sum = 0
for data in eval_dataloader:
if not self.packing_samples:
chosen_ids, c_mask, reject_ids, r_mask, margin = data
chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device())
c_mask = c_mask.squeeze(1).to(torch.cuda.current_device())
reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device())
r_mask = r_mask.squeeze(1).to(torch.cuda.current_device())
chosen_reward, reject_reward, _ = self.concatenated_forward(
self.model, chosen_ids, c_mask, reject_ids, r_mask
)
else:
packed_input_ids, packed_attention_masks, packed_seq_lens, margin = data
packed_input_ids, packed_attention_masks = packed_input_ids.to(
torch.cuda.current_device()
), packed_attention_masks.to(torch.cuda.current_device())
chosen_reward, reject_reward, _ = self.packed_samples_forward(
self.model, packed_input_ids, packed_attention_masks, packed_seq_lens
)
if self.margin_loss:
margin = torch.tensor(margin).to(torch.cuda.current_device())
else:
margin = None
loss = self.loss_fn(chosen_reward, reject_reward, margin)
rewards += [chosen_reward.flatten(), reject_reward.flatten()]
acc += (chosen_reward > reject_reward).float().mean().item()
loss_sum += loss.item()
step_bar.update()
# 计算并保存模型的表现
self.model.train() # reset model state
def concatenated_forward(self, model, chosen_ids, c_mask, reject_ids, r_mask):
"""Run the given model on the given batch of inputs, concatenating the chosen and rejected inputs together.
We do this to avoid doing two forward passes, because it's faster for FSDP.
"""
input_ids, att_masks = self.concatenated_inputs(chosen_ids, c_mask, reject_ids, r_mask)
all_values, output = model(input_ids, attention_mask=att_masks, return_output=True)
chosen_rewards = all_values[: chosen_ids.shape[0]]
rejected_rewards = all_values[chosen_ids.shape[0] :]
aux_loss = output.aux_loss if "aux_loss" in output else []
return chosen_rewards, rejected_rewards, aux_loss
def concatenated_inputs(self, chosen_ids, c_mask, reject_ids, r_mask):
"""Concatenate the chosen and rejected inputs into a single tensor.
Args:
batch: A batch of data. Must contain the keys 'chosen_input_ids' and 'rejected_input_ids', which are tensors of shape (batch_size, sequence_length).
Returns:
A dictionary containing the concatenated inputs under the key 'concatenated_input_ids'.
"""
def pad_to_length(tensor, length, pad_value, dim=-1):
if tensor.size(dim) >= length:
return tensor
else:
pad_size = list(tensor.shape)
pad_size[dim] = length - tensor.size(dim)
# left pad
return torch.cat(
[pad_value * torch.ones(*pad_size, dtype=tensor.dtype, device=tensor.device), tensor], dim=dim
)
max_length = max(chosen_ids.shape[1], reject_ids.shape[1])
inputs_ids = torch.cat(
(
pad_to_length(chosen_ids, max_length, self.tokenizer.pad_token_id),
pad_to_length(reject_ids, max_length, self.tokenizer.pad_token_id),
),
dim=0,
)
max_length = max(c_mask.shape[1], r_mask.shape[1])
att_masks = torch.cat((pad_to_length(c_mask, max_length, 0), pad_to_length(r_mask, max_length, 0)), dim=0)
return inputs_ids, att_masks
def packed_samples_forward(self, model, packed_input_ids, packed_attention_masks, packed_seq_lens):
all_values, output = model(
packed_input_ids,
attention_mask=packed_attention_masks,
return_output=True,
ring_attn_group=self.strategy.ring_attn_group,
packed_seq_lens=packed_seq_lens,
)
half_len = len(packed_seq_lens) // 2
chosen_rewards = all_values[:half_len]
rejected_rewards = all_values[half_len:]
aux_loss = output.aux_loss if "aux_loss" in output else []
return chosen_rewards, rejected_rewards, aux_loss
|